Substantial bulk photovoltaic effect enhancement via nanolayering
نویسندگان
چکیده
منابع مشابه
Substantial bulk photovoltaic effect enhancement via nanolayering
Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric ...
متن کاملPrediction of a linear spin bulk photovoltaic effect in antiferromagnets.
Here we predict the existence of a linear bulk spin photovoltaic effect, where spin currents are produced in antiferromagnetic materials as a response to linearly polarized light, and we describe the symmetry requirements for such a phenomenon to exist. This effect does not depend on spin-orbit effects or require inversion symmetry breaking, distinguishing it from previously explored methods. W...
متن کاملBulk photovoltaic effect in an organic polar crystal.
Organic polar crystals from the donor-acceptor substituted 1,4-diphenybutadiene 1 can generate a short-circuit photocurrent and a photovoltage upon illumination with near UV light. The photocurrent and photovoltage are attributed to a bulk photovoltaic effect. The bulk photovoltaic effect has been known for inorganic polar crystals for decades and can now also be demonstrated for organic polar ...
متن کاملMultipolymer Interactions in Bulk Heterojunction Photovoltaic Devices
Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of the...
متن کاملFirst-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x).
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of the bulk photovoltaic (PV) effect for ferroelectric photovoltaics, in CH₃NH₃PbI₃ and CH₃NH₃PbI(3-x)Cl(x) from first-principles. We find that these materials give approximately three times larger shift curr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2016
ISSN: 2041-1723
DOI: 10.1038/ncomms10419